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Pattern formation in the instability of a vicinal surface by the drift of adatoms
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We study the behavior of steps in a vicinal face with drift of adsorbed atoms~adatoms! by an external field.
When the drift is in the downhill direction and its velocity exceeds critical values,vc

x andvc
y , the vicinal face

is linearly unstable to long-wavelength fluctuations parallel and/or perpendicular to the steps. By taking the
continuum limit of the step-flow model, we derive an anisotropic Kuramoto-Sivashinsky equation with propa-
gative terms, which describes the motion of an unstable vicinal face. Its numerical solution shows ripples or a
zigzag pattern expected from the linear analysis. Nonlinearity becomes important in the late stage and, de-
pending on the condition, various patterns are formed: regular step bunches, a hill and valley structure tilted
from the initial step direction, mounds, and a chaotic pattern.@S1063-651X~99!03612-0#

PACS number~s!: 81.10.Aj, 05.70.Ln, 47.20.Hw, 05.45.2a
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I. INTRODUCTION

Morphological instability in a vicinal face is a result o
the two linear instabilities of steps: wandering and bunchi
When a train of steps encounters the wandering~or bunch-
ing! instability, ripples perpendicular to~or parallel to! the
steps occur. These instabilities are induced by the asymm
of the surface diffusion field of adsorbed atoms~adatoms!.
Typical causes of the asymmetry are the Ehrlich-Schwoe
~ES! effect @1–5# and the drift of adatoms by an extern
field @6–14#.

When a vicinal face is grown by molecular-beam epta
~MBE!, the formation of large bunches is observed@15–18#.
This morphological instability is probably caused by the
effect. When adatoms attach to the step easier from the lo
terrace, the wandering~or bunching! occurs in growth~or in
sublimation! when supersaturation~or undersaturation! ex-
ceeds a critical value@3–5#. When the ES effect is in the
opposite sign, the bunching instability occurs in grow
Since the two instabilities do not occur simultaneously,
initial stage of the instabilities can be studied with on
dimensional models. Two-dimensional effects influence
surface morphology in a late stage of instability@4,19,20#.
When the wandering instability occurs, ripples perpendicu
to the steps are produced at the initial stage as expected
the linear analysis. At a late stage the unstable vicinal f
shows a chaotic pattern or a moundlike structure by the w
dering of the steps@20#.

In a Si~111! vicinal surface, the bunching instability i
observed when the specimen is heated by direct electric
rent @21–24#. The cause of the instability is the drift of ada
toms induced by the electric current. Adatoms have an ef
tive charge and encounter a force proportional to the exte
field @25#. When the bunches are almost straight as obser
in several experiments@22,23#, essential features are ex
plained by the one-dimensional step-flow model@12–14#,
However, it has been shown that the drift also causes
wandering instability@10,11# at the same time. If this hap
pens, the produced pattern should be more complicated
that with the ES effect.

In this paper we study two-dimensional motion of steps
PRE 601063-651X/99/60~6!/7120~6!/$15.00
.
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a vicinal surface with the drift of adatoms. In order to d
scribe the pattern of the surface, we derive a nonlinear e
lution equation by taking the continuum limit of the ste
flow model. Numerical integration of the equation is carri
out for two situations: the vicinal face is unstable to on
bunching and to both bunching and wandering.

II. MODEL

We use the step-flow model of Stoyanov@6–11#. We set
the y axis in the downhill direction and thex axis along the
steps. Adatoms diffuse on a terrace with the diffusion co
stantDs and drift with a velocityv in the downhill direction
before they evaporate with the lifetimet. The diffusion
equation of adatom density is given by

]c

]t
5Ds“

2c2v
]c

]y
2

1

t
c. ~1!

The current of adatoms at thenth step is proportional to the
difference of adatom density at the step and its equilibri
valuecn ,

6Dsn̂•“cu67vcu65K6~cu62cn!, ~2!

where n̂ is the unit vector normal to the step,K6 are the
kinetic coefficients, and the suffix1 (2) indicates the
lower ~upper! terrace. The different values ofK1 and K2

imply the ES effect@2,3#. In the following, we neglect the ES
effect and setK65K for simplicity. When the neighboring
steps with a distancel interact with the repulsive potentia
A/ l 2n, the equilibrium adatom density at thenth step is
given by

cn5ceq
0 F12

Vb̃

kBT
k1

nVA

kBT (
m5n61

1

~yn2ym!n11G , ~3!

whereceq
0 is the equilibrium adatom density of an isolate

straight step,yn is the position of thenth step,b̃ is the step
stiffness,V is the atomic area, andk is the step curvature
7120 © 1999 The American Physical Society
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We setn52, which corresponds to the elastic repulsion.
solving Eq.~1! with Eq. ~2! in the quasistatic approximatio
(]c/]t50), we can determine the adatom density. The
sition of thenth step is given by the deviationzn(x,t) from
the ideal vicinal growth asyn5v0( l )t1nl1zn(x,t). Time
evolution of the fluctuationzn is given by

1

A11~]zn /]x!2 S v01
]zn

]t D
5V~Dsn̂•“cu12vcu1!2V~Dsn̂•“cu22vcu2!. ~4!

III. LINEAR ANALYSIS

When the drift velocity is smaller than the characteris
velocity of the surface diffusion,v,Ds /xs (xs[ADst is
the surface diffusion length!, the linear dispersion relation i
obtained for a small perturbation,zn(x,t)5z1 exp(iqx1iknl
1vt), with the wavelength larger thanxs as

v~k,q!5 ia1k1a2k21 ia3k31a4k4

1b2q21b4q4

1 im1kq21m2k2q2, ~5!

where the coefficients are

a1

VDsceq
0

52
l

xs
2

,

a2

VDsceq
0

5
v l 2K

2Ds
2

2
6VA

kBTlxs
2

,

a3

VDsceq
0

52
l 3

6xs
2

2
3VAvK

kBTDs
2

,

a4

VDsceq
0

52
v l 4K

24Ds
2

2
3VAK

kBTDs
, ~6!

b2

VDsceq
0

5
v l

Ds
2

Vb̃ l

kBTxs
,

b4

VDsceq
0

52
Vb̃ l

kBT
,

m1

VDsceq
0

5
Dsl

2

2Kxs
2

1
Vb̃v l 2K

2kBTDs
2

,

m2

VDsceq
0

52
Vb̃K

kBTDs
2

6VA

kBTl
2

v l 3

4Ds
.

The real part of Eq.~5! is the growth rate of the perturbation
The first line in Eq.~5! is the dispersion representing th
bunching instability of straight steps@9# and the second line
is that representing the wandering instability of an in-ph
mode. Sincea4 andb4 are always negative, the vicinal fac
-

e

is stable at short wavelengths. The stability at a long wa
length is determined bya2 andb2. When the drift velocity
exceeds the critical valuevc

x ~or vc
y), b2 ~or a2) becomes

positive and the vicinal face is unstable to the fluctuat
parallel to ~or perpendicular to! the step. The critical drift
velocities are given by@26#

vc
y5

12Ds
2VA

Kxs
2kBTl3

, vc
x5

Vb̃Ds

kBTxs
2

. ~7!

With decreasing the step distance,vc
y increases because o

stronger repulsion and the vicinal face is more stable to
bunching instability whilevc

x is independent of the step dis
tance.

The imaginary part of Eq.~5! gives the propagation spee
of the perturbation. With a finite surface diffusion length~in
a nonconserved system!, the most dominant term in the
imaginary part isia1k near the threshold of the instability
Then the propagation velocity is independent of the wa
vector of the fluctuation. The wave pattern of the fluctuati
shifts to the downhill direction with the velocityVy

5VDsceq
0 l /xs

2 .

IV. NONLINEAR EVOLUTION EQUATION

The linear analysis predicts only the beginning of the
stability. In order to investigate the time evolution o
z(x,y,t) @27#, we take account of nonlinear effects arisin
from the fluctuation of large amplitude. Near the threshold
the instability, a nonlinear evolution equation can be deriv
systematically by the reductive perturbation method@28#.
Here we derive the nonlinear equation by considering
symmetry of the system. The linear part of the evoluti
equation is obtained by replacingv, ik, and iq with ]/]t,
]/]y, and]/]x. Since the vicinal face has the translation
symmetry and the inversion symmetry in thex direction, the
expected nonlinear terms arezx

2 , zy
2 , zxxzy , zxx

2 ,
zxxzyy , . . . . The wavelength of growing fluctuation is lon
near the threshold of instability and the most important ter
aregzx

2 andlzy
2 .

The coefficientg is obtained by inspecting the velocity o
the straight step tilted from thex axis @29#. The normal ve-
locity of the step is a function of the step distance. When
step is tilted with an angleu, the step distance isl cosu so
that it moves in they direction with the velocity

v0~ l cosu!

cosu
' v01

@v0~ l !2v08~ l !l #

2
zx

2 . ~8!

Since the extra term@v0( l )2v08( l ) l #zx
2/2 is the origin of the

nonlinearity, we can set

g5
v0~ l !2v08~ l !l

2
. ~9!

Also the other coefficientl is obtained from the velocity of
the straight step with a change of the step distance. The l
step distance is given byl 1(zn112zn)' l (11zy) in the
continuum limit of the step numbern. The velocity of the
straight step is
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v0~ l 1 l zy!'v0~ l !1v08~ l !l zy1
v09~ l !l 2

2
zy

2 . ~10!

The second term corresponds toia1k in Eq. ~5! and the third
term is the nonlinear term in the evolution equation:

l5
v09~ l !l 2

2
. ~11!

When we take only the lowest order inl, we find

g52
l

2
52

ceq
0 Ds

2KDs
2xs

2 S 1

xs
2

1
K2

Ds
2D l 2. ~12!

The signs of the nonlinear terms,g andl, are different@30#
and independent of the drift of adatoms. By taking acco
of Eq. ~12!, the nonlinear evolution equation is given by

]z

]t
5a1

]z

]y
2a2

]2z

]y2
2a3

]3z

]y3
1a4

]4z

]y4
2b2

]2z

]x2
1b4

]4z

]x4

2m1

]3z

]x2]y
1m2

]4z

]x2]y2
1lS ]z

]yD 2

2
l

2 S ]z

]xD 2

. ~13!

Strictly speaking, Eq.~13! is valid only near the threshold o
the two instabilities. However, the form of this equation
determined by the symmetry of the system and by the
that long-wavelength modes are relevant. Therefore, we
use it for a qualitative description beyond its justifiability.
a35m150 anda45b45m2/2 (a1zx vanishes with the Ga
lileian transformation,y→y1a1t), Eq. ~13! is the aniso-
tropic Kuramoto-Sivashinsky equation studied by Rost a
Krug @32#.

V. NUMERICAL CALCULATION

We investigate the pattern produced by Eq.~13! by car-
rying out numerical integration of the differential equatio
We discretize H(X,Y,T) as H( i , j ,T), where i , j
51,2, . . . ,L(5128), and replace the derivatives withx and
y to the finite difference@31#. We solve Eq.~13! by using the
Runge-Kutta method.

Case I: vc
y,v,vc

x . The vicinal face is linearly unstabl
only in the y direction. Since the vicinal face is linearl
stable along the step,zxxxx is irrelevant. For simplicity, we
neglectzxyy andzxxyy. By using the scaled variables,

Y5A a2

ua4u~
y1a1t !, X5A2a2

ua4u
x,

T5
a2

2

ua4u
t, H5

aa2

ll
z, ~14!

whereH is actually a dimensionless fluctuation of the surfa
height, and dimensionless parameters

d15A a3
2

a2ua4u
, d25U2b2

a2
U, ~15!

the evolution equation is given by
t

ct
ill

d

.

e

]H

]T
52

]2H

]Y2
2d1

]3H

]Y3
2

]4H

]Y4
1d2

]2H

]X2
1S ]H

]Y D 2

2S ]H

]X D 2

.

~16!

Near the threshold of the bunching instability,d1 andd2 are
large sincea2 is small. Figure 1 shows snapshots of a so
tion of Eq.~16! for d151 andd251. The initial condition is
H(X,Y,0)'0 with random small-amplitude fluctuations
and the boundary condition is periodic. The difference
brightness represents the difference of the surface height
dark is low and the bright is high. The ripple structure pa
allel to the x direction, which appears at the initial stag
coarsens considerably and shows slight angular crests a
middle stage. At the late stage the ripples become stra
and the pattern in they direction is not symmetric due to th
effect of HYYY. If d150, the ripple pattern has inversio
symmetry in they direction. The coarsening does not pr
ceed much and the fluctuation of ripples in thex direction
becomes larger as shown in Fig. 2. Since the form of
~16! is determined by the symmetry of the system, Eq.~16!
also describes the bunching by the ES effect. The forms
the bunches in Refs.@15# and @16# are similar to Fig. 1.

Case II: vc
x,v,vc

y . The vicinal face is linearly unstable
only in the x direction. This case is equivalent to the wa
dering by the ES effect, which has been studied by Pie
Louis and Misbah@20#. They carried out numerical integra
tion of the nonlinear evolution equation,

]H

]T
5h̃2

]3H

]Y]X2
1

]2H

]Y2
2

]2H

]X2
2

]4H

]X4
1S ]H

]X D 2

, ~17!

where the irrelevant termsHYYY, HYYYY, and the nonlinear
term HY

2 were neglected and the lowest-order propagat
term HXXY was taken into account. At the initial stag
ripples perpendicular to the steps appear as expected
the linear analysis and develop without coarsening. The
havior at a late stage depends on the strength of the pr
gative termh̃2. With a smallh̃2, the ripples are torn off and
the moundlike structure is produced. With a largeh̃2, the
destabilized ripple structure shows a chaotic behavior.

Case III: vc
y,vc

x,v. The vicinal face is linearly unstable
in both directions. Thend3HXXXX (d354ub4 /a4u) is added
to Eq. ~16!,

]H

]T
52

]2H

]Y2
2d1

]3H

]Y3
2

]4H

]Y4
2d2

]2H

]X2

2d3

]4H

]X4
1S ]H

]Y D 2

2S ]H

]X D 2

. ~18!

Whenv is nearvc
x , d2 is a small parameter. Figure 3 show

a snapshot of a solution ford151, d250.2, andd351. At
the initial stage a zigzag pattern is produced. Later as
amplitude increases, the pattern changes drastically.
ripples are now straightened and form an irregular striat
parallel toy5x or y52x. Two orthogonal regions coexis
but one has disappeared in the late stage in Fig. 3 becau
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the finite system size. This is very similar to that observed
Ref. @32#, and the third derivative term does not seem to p
an important role in the present case.

FIG. 1. Snapshots of a solution of Eq.~16! with d15d251 at
~a! T540, ~b! T5100, and~c! T5400. The system size is 12
3128 with the periodic boundary condition.
n
y

Case IV:vc
x,vc

y,v. In this case the evolution equation
the same form as in case III. Sincev is nearvc

y , d1 is large
and d2 is a large negative parameter. The pattern in a l

FIG. 2. Snapshots of a solution of Eq.~16! with d150 andd2

51 at ~a! T540, ~b! T5100, and~c! T5600. The system size is
1283128 with the periodic boundary condition.
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stage is a hill and valley structure similar to that in case
Figure 4 shows the time evolution of the surface wid

for the pattern of Figs. 1–3, defined as

FIG. 3. Snapshots of a solution of Eq.~18! with d151, d2

50.2, andd351 at ~a! T520, ~b! T580, and~c! T5160. The
system size is 1283128 with the periodic boundary condition.
.
,

W5A 1

L2 (
i , j

@H~ i , j ,T!2H̄~T!#2, ~19!

where

H̄~T!5
1

L2 (
i , j

H~ i , j ,T!. ~20!

At the initial stage (T&40) the surface width increases ra
idly as expected from the linear instability. Thus Fig. 1~a!,
Fig. 2~a!, and Fig. 3~a! represent the surface patterns at t
end of the exponential growth of the instability. In case
~Figs. 1 and 2! the linear instability occurs only in they
direction and the ripple structure parallel to thex direction
appears. In case III~Fig. 3! the linear instability occurs both
in the x and in they direction. Since the wavelength of th
most unstable mode is longer in thex direction, the undula-
tion along thex axis appears more prominently. Nonlineari
dominates the pattern forT*40. In case I the surface width
saturates and a steady state seems to be realized, but the
evolution of the surface pattern and the widthW is different
with the third derivative term. Whend is large@Figs. 1 and
4~a!#, after the growth and fluctuation, the width stays co

FIG. 4. Time evolution of the surface width,W, in ~a! case I
~Fig. 1!, ~b! case I~Fig. 2!, and~c! case III ~Fig. 3!.
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stant and the ripple pattern becomes regular. Whend van-
ishes @Figs. 2 and 4~b!#, on the other hand, the width i
fluctuating perpetually and the pattern is chaotic. Thus
third derivative term, which breaks the inversion symmet
is essential for the regular stable pattern. The behavior of
width is very different in case III@Figs. 3 and 4~c!#. In the
early nonlinear stage (40&T&150), where the irregula
striation is produced and two orthogonal regions coe
@Fig. 3~b!#, the surface width increases gradually, which c
responds to slow growth of the domain. In the late sta
(150&T) one of the regions becomes dominant and the s
face width increases very rapidly. Since this final stage o
single domain results from the finite system size, it is u
physical and will not be realized in real systems.

VI. DISCUSSION

In Si~111! vicinal surfaces, where step bunching is o
served by many groups@21–24#, the relevant parameters a
estimated asb̃52.0310210 J m21 @33#, A54.6310230 J m
@33#, Ds51.8310210 m2/s @23#, xs51.331024 m @23#,
and K55.431024 m/s @23# at T'900 °C. When we use
V59310220 m2, l 5431027 m, the critical values of the
,

,

th

s.
e
,
e

t
-
e
r-
a
-

-

instabilities are estimated to bevc
y'1.6310217 m/s andvc

x

'1.2310211 m/s. Thus case II can hardly happen, and c
I is much more likely than case III~case III may be realized
with a small l ). However, since the drift of adatoms is in
duced by an external field in many systems@34#, all cases
studied here may be realized in some other systems.

In Eq. ~13! all the terms expected from the symmetry
the system appear. For simplicity, we have neglected sev
terms and studied the limited cases in this paper. The
glected terms may have some effect on the morphology
have found here. It is important to study more general ca
which will be done in the future.
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