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Pattern formation in the instability of a vicinal surface by the drift of adatoms
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We study the behavior of steps in a vicinal face with drift of adsorbed atadeom$ by an external field.
When the drift is in the downbhill direction and its velocity exceeds critical valuggndvy, the vicinal face
is linearly unstable to long-wavelength fluctuations parallel and/or perpendicular to the steps. By taking the
continuum limit of the step-flow model, we derive an anisotropic Kuramoto-Sivashinsky equation with propa-
gative terms, which describes the motion of an unstable vicinal face. Its numerical solution shows ripples or a
zigzag pattern expected from the linear analysis. Nonlinearity becomes important in the late stage and, de-
pending on the condition, various patterns are formed: regular step bunches, a hill and valley structure tilted
from the initial step direction, mounds, and a chaotic patte$t063-651X99)03612-0

PACS numbgs): 81.10.Aj, 05.70.Ln, 47.20.Hw, 05.45a

[. INTRODUCTION a vicinal surface with the drift of adatoms. In order to de-
scribe the pattern of the surface, we derive a nonlinear evo-
Morphological instability in a vicinal face is a result of lution equation by taking the continuum limit of the step-
the two linear instabilities of steps: wandering and bunchingflow model. Numerical integration of the equation is carried
When a train of steps encounters the wandetimgbunch- ~ out for two situations: the vicinal face is unstable to only
ing) instability, ripples perpendicular teor parallel to the  bunching and to both bunching and wandering.
steps occur. These instabilities are induced by the asymmetry
of the surface diffusion field of adsorbed atoaslatoms Il. MODEL
Typical causes of the asymmetry are the Ehrlich-Schwoebel
(ES) effect [1-5] and the drift of adatoms by an external e use the step-flow model of Stoyanif~11]. We set
field [6—14). they axis in the dpwnhlll direction and _th)eaX|s along the
When a vicinal face is grown by molecular-beam eptaxinteF’S- Adatom_s dlf_fuse on a terrace with the_dlff_usm_n con-
(MBE), the formation of large bunches is obserjé&—1§. stantD¢ and drift with a ve!omtyv in thg downhill d_|rect_|on
This morphological instability is probably caused by the ESPefore they evaporate with the lifetime. The diffusion
effect. When adatoms attach to the step easier from the low&duation of adatom density is given by
terrace, the wanderin@r bunching occurs in growth(or in
sublimation when supersaturatiofor undersaturationex- ‘9_0 -D Vzc—va—c— Ec 1)
ceeds a critical valu¢3—5]. When the ES effect is in the at - —° ay '
opposite sign, the bunching instability occurs in growth.
Since the two instabilities do not occur simultaneously, thelhe current of adatoms at timh step is proportional to the
initial stage of the instabilities can be studied with one-difference of adatom density at the step and its equilibrium
dimensional models. Two-dimensional effects influence thevaluec,,
surface morphology in a late stage of instabilig;19,20. R
When the wandering instability occurs, ripples perpendicular +Dn- V|- Fve|-=K.(c|-—cp), 2
to the steps are produced at the initial stage as expected from
the linear analysis. At a late stage the unstable vicinal faceyheren is the unit vector normal to the ste,. are the
shows a chaotic pattern or a moundlike structure by the warkinetic coefficients, and the suffix- (—) indicates the
dering of the step§20]. lower (uppe) terrace. The different values ¢, and K_
In a S{111) vicinal surface, the bunching instability is imply the ES effecf2,3]. In the following, we neglect the ES
observed when the specimen is heated by direct electric cugffect and seK . =K for simplicity. When the neighboring

rent[21-24. The cause of the instability is the drift of ada- steps with a distanckinteract with the repulsive potential
toms induced by the electric current. Adatoms have an effeca/| =, the equilibrium adatom density at theth step is
tive charge and encounter a force proportional to the externgfiven by
field [25]. When the bunches are almost straight as observed

in several experiment§22,23, essential features are ex- QZ? JOA 1
plained by the one-dimensional step-flow mof&p—-14, cnzcgt{l——wr > 1|
However, it has been shown that the drift also causes the kT KeT m=r=1 (Yn=Ym)
wandering instability{ 10,11 at the same time. If this hap- 0 . o ) )
pens, the produced pattern should be more complicated thaH1€re Ceq IS the equilibrium adatom density of an isolated
that with the ES effect. straight stepy, is the position of thenth step,s is the step

In this paper we study two-dimensional motion of steps instiffness,() is the atomic area, and is the step curvature.

()
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We setv=2, which corresponds to the elastic repulsion. Byis stable at short wavelengths. The stability at a long wave-

solving Eq.(1) with Eg. (2) in the quasistatic approximation

length is determined bw, and 8,. When the drift velocity

(dcl/at=0), we can determine the adatom density. The poexceeds the critical value} (or vY), B, (or a,) becomes

sition of thenth step is given by the deviatiof(x,t) from
the ideal vicinal growth ay,=vg(l)t+nl+,(x,t). Time
evolution of the fluctuatior,, is given by

I ‘?_gn)
\/1+(agn/ax)7(V°+ at

=Q(Dgn- V|, —ve|,)—Q(DN-Ve|_—ve|).  (4)

Ill. LINEAR ANALYSIS

When the drift velocity is smaller than the characteristic a

velocity of the surface diffusiony<Dg/xs (X<=Dsr is
the surface diffusion lengihthe linear dispersion relation is
obtained for a small perturbatiod,(x,t) = ¢; expigx+iknl
+wt), with the wavelength larger than, as

o(k,q)=iak+ ak?®+iazk3+ ak?
+B20°+ Baq*
+i kP + uok?9?, ©)
where the coefficients are

a7 |

abe, X

a,  VvI’K  BQA
0 opn2 2"
ODgCeq 2D5  kgTIXg

ag I 30AvVK

0Dl 6x2  kgTD?'

a, vI*K  3QAK
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The real part of Eq(5) is the growth rate of the perturbation.

positive and the vicinal face is unstable to the fluctuation
parallel to (or perpendicular fpthe step. The critical drift
velocities are given by26]

QD

X_ _
kgTx

Ve

12D20A
y_—

Ve Kx2kgTI3' @
With decreasing the step distanad, increases because of
stronger repulsion and the vicinal face is more stable to the
bunching instability whilev is independent of the step dis-
tance.

The imaginary part of Eq5) gives the propagation speed
of the perturbation. With a finite surface diffusion lengih

a nonconserved systgmthe most dominant term in the
imaginary part is a1k near the threshold of the instability.
Then the propagation velocity is independent of the wave
vector of the fluctuation. The wave pattern of the fluctuation
shifts to the downhill direction with the velocity,
=QD /xS

IV. NONLINEAR EVOLUTION EQUATION

The linear analysis predicts only the beginning of the in-
stability. In order to investigate the time evolution of
Z(x,y,t) [27], we take account of nonlinear effects arising
from the fluctuation of large amplitude. Near the threshold of
the instability, a nonlinear evolution equation can be derived
systematically by the reductive perturbation metH@@.
Here we derive the nonlinear equation by considering the
symmetry of the system. The linear part of the evolution
equation is obtained by replacing, ik, andiq with d/4dt,
dldy, anddldx. Since the vicinal face has the translational
symmetry and the inversion symmetry in theirection, the
expected nonlinear terms ar€;, (5. lxdy. i
{xxlyys - -- - The wavelength of growing fluctuation is long
near the threshold of instability and the most important terms
are yZ and\ (7.

The coefficienty is obtained by inspecting the velocity of
the straight step tilted from the axis[29]. The normal ve-
locity of the step is a function of the step distance. When the
step is tilted with an angl®, the step distance iscosé so
that it moves in they direction with the velocity

vo(l cosf) [vo(D—vo(DHIT
Tooss T2

®

Since the extra terrfvo(1) —v(1)11£2/2 is the origin of the
nonlinearity, we can set

—vg(hl
y:Vo( 2Vo( . )

Also the other coefficienk is obtained from the velocity of

The first line in Eq.(5) is the dispersion representing the the straight step with a change of the step distance. The local

bunching instability of straight step8] and the second line

step distance is given bl+ ({ny1—¢n)=1(1+¢,) in the

is that representing the wandering instability of an in-phaseontinuum limit of the step number. The velocity of the
mode. Sincay, and B, are always negative, the vicinal face straight step is
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The second term correspondsi tg k in Eq. (5) and the third (16

term is the nonlinear term in the evolution equation: Near the threshold of the bunching instabilisi;, and 8, are
V()12 large sincea, is small. Figure 1 shows snapshots of a solu-
0 _ (11)  tion of Eq.(16) for 6;=1 ands,=1. The initial condition is
2 H(X,Y,0)=~0 with random small-amplitude fluctuations,
and the boundary condition is periodic. The difference of
brightness represents the difference of the surface height: the
dark is low and the bright is high. The ripple structure par-
12 (12) allel to the x direction, which appears at the initial stage,
coarsens considerably and shows slight angular crests at the
middle stage. At the late stage the ripples become straight
The signs of the nonlinear termg,and\, are differen{30]  and the pattern in thg direction is not symmetric due to the
and independent of the drift of adatoms. By taking accountffect of Hyyy. If 6,=0, the ripple pattern has inversion
of Eq. (12), the nonlinear evolution equation is given by  symmetry in they direction. The coarsening does not pro-
ceed much and the fluctuation of ripples in thelirection
aL a 9L 93 I P 9 becomes larger as shown in Fig. 2. Since the form of Eq.
g Yoy aza_yz_%a_y?’ “4(9_)”_32%4'/34% (16) is determined by the symmetry of the system, Bdp)
also describes the bunching by the ES effect. The forms of
2 the bunches in Ref$15] and[16] are similar to Fig. 1.
(13 Case Il:vi<v<vY. The vicinal face is linearly unstable
only in the x direction. This case is equivalent to the wan-

. . . . dering by the ES effect, which has been studied by Pierre-
Strictly speaking, Eq(13) is valid only near the threshold of Louis and MisbaH20]. They carried out numerical integra-

the two instabilities. However, the form of this equation is : 4 :
determined by the symmetry of the system and by the facrtIon of the nonlinear evolution equation,
that long-wavelength modes are relevant. Therefore, we will
use it for a qualitative description beyond its justifiability. If JH - PH  PH H *H [oH
az3=pu1=0 anda,= B,=u,/2 (a,{, vanishes with the Ga- T et T e T e T ( IX
lileian transformationy—y+ aqt), Eq. (13) is the aniso-
tropic Kuramoto-Sivashinsky equation studied by Rost and
Krug [32]. where the irrelevant termdyyy, Hyvyy, and the nonlinear
term H$ were neglected and the lowest-order propagative
V. NUMERICAL CALCULATION term Hyxy was taken into account. At the initial stage,
) ) ripples perpendicular to the steps appear as expected from
‘We investigate the pattern produced by EE8) by car-  ihe jinear analysis and develop without coarsening. The be-
rying out numerical integration of the differential equation. 5vior at a late stage depends on the strength of the propa-

We discretize H(X,Y,T) as H(i,j,T), where i,j . ~ . ~ .
—12,...L(=128), and replace the derivatives witrand gative termz,. With a smallz,, the ripples are torn off and

y to the finite differencé31]. We solve Eq(13) by using the the moundlike structure is produced. With a largg the
Runge-Kutta method. destabilized ripple structure shows a chaotic behavior.

Case I:v)<v<vX. The vicinal face is linearly unstable = Case lIl: vi{<vi<v. The vicinal face is linearly unstable
only in the y direction. Since the vicinal face is linearly In both directions. ThesHyxxx (83=4|B4/a4|) is added
stable along the stefd,,.x iS irrelevant. For simplicity, we to Eq. (16),
neglect{,,y, and{,yy. By using the scaled variables,

When we take only the lowest order linwe find

_ M ceps
2 2KD2x2

1 K?

x; D3

93 * (ag)z A ( a
+ +
ax

P 2 2
Yoxay 2 ax2oy? ay

— i 5
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Y=y +agt), X=/r—x, aTavr TPavd gyt TPox?
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2 *H (aH)Z (aH 2

as aas — i
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=2 =2 (18)
T t, H=7;

¢ (14) ~ %
whereH is actually a dimensionless fluctuation of the surfaceWhenv is nearvy, &, is a small parameter. Figure 3 shows
height, and dimensionless parameters a snapshot of a solution fa¥; =1, §,=0.2, andd;=1. At
the initial stage a zigzag pattern is produced. Later as the
O1= _a3 5 = % . . . ..
1= N ayla,] 72 ripples are now straightened and form an irregular striation
parallel toy=x or y=—x. Two orthogonal regions coexist,

15 amplitude increases, the pattern changes drastically. The
Ay '
the evolution equation is given by but one has disappeared in the late stage in Fig. 3 because of
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FIG. 1. Snapshots of a solution of E{.6) with 5,=5,=1 at FIG. 2. Snapshots of a solution of EQL6) with 6,=0 and5,
(a) T=40, (b) T=100, and(c) T=400. The system size is 128 — 1 at(@& T=40, (b) T=100, and(c) T=600. The system size is
X 128 with the periodic boundary condition. 128x 128 with the periodic boundary condition.

the finite system size. This is very similar to that observed in Case IV:vg<v{<v. In this case the evolution equation is
Ref.[32], and the third derivative term does not seem to playthe same form as in case lll. Singeis nearvy, &, is large
an important role in the present case. and &, is a large negative parameter. The pattern in a late
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(c)

FIG. 3. Snapshots of a solution of E@L8) with §,=1, &,
=0.2, andsz=1 at(a) T=20, (b) T=80, and(c) T=160. The
system size is 128128 with the periodic boundary condition.
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FIG. 4. Time evolution of the surface widthy, in (a) case |
(Fig. 1, (b) case I(Fig. 2, and(c) case Il (Fig. 3.

1 —
W= \/FZ, [H(i.j,T)=HMP, (19

where

_ 1

H(T)=F E, H(i,j,T). (20
At the initial stage T=40) the surface width increases rap-
idly as expected from the linear instability. Thus Figa)l

Fig. 2@, and Fig. 3a) represent the surface patterns at the
end of the exponential growth of the instability. In case |
(Figs. 1 and 2 the linear instability occurs only in thg
direction and the ripple structure parallel to thelirection
appears. In case I[Fig. 3) the linear instability occurs both

in the x and in they direction. Since the wavelength of the
most unstable mode is longer in tkealirection, the undula-

tion along thex axis appears more prominently. Nonlinearity
dominates the pattern far=40. In case | the surface width
saturates and a steady state seems to be realized, but the time

stage is a hill and valley structure similar to that in case lll.evolution of the surface pattern and the widthis different
Figure 4 shows the time evolution of the surface width,with the third derivative term. Whe# is large[Figs. 1 and

for the pattern of Figs. 1-3, defined as

4(a)], after the growth and fluctuation, the width stays con-



PRE 60 PATTERN FORMATION IN THE INSTABILITY OF A.. .. 7125

stant and the ripple pattern becomes regular. Wleran-  instabilities are estimated to b&~1.6x 10" 1" m/s andv
ishes[Figs. 2 and #4)], on the other hand, the width is ~1.2x10 ' m/s. Thus case Il can hardly happen, and case
fluctuating perpetually and the pattern is chaotic. Thus the is much more likely than case I(case Ill may be realized
third derivative term, which breaks the inversion symmetry,with a smalll). However, since the drift of adatoms is in-

is essential for the regular stable pattern. The behavior of thduced by an external field in many systef34], all cases
width is very different in case II[Figs. 3 and 4)]. In the  studied here may be realized in some other systems.

early nonlinear stage (49T=<150), where the irregular In Eqg. (13) all the terms expected from the symmetry of
striation is produced and two orthogonal regions coexisthe system appear. For simplicity, we have neglected several
[Fig. 3(b)], the surface width increases gradually, which cor-terms and studied the limited cases in this paper. The ne-
responds to slow growth of the domain. In the late stagegjlected terms may have some effect on the morphology we
(150=T) one of the regions becomes dominant and the surhave found here. It is important to study more general cases,
face width increases very rapidly. Since this final stage of avhich will be done in the future.

single domain results from the finite system size, it is un-

physical and will not be realized in real systems. ACKNOWLEDGMENTS
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